MATHEMAT

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

HIGHER ORDER DERIVATIVES

& Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	400000000000000000000000000000000000000
Exercise-III	
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

1. If y = f(x), then $\frac{d}{dx} \left(\frac{dy}{dx} \right)$ is called second order derivative of y with respect to x and is denoted

by
$$\frac{d^2y}{dx^2}$$
 or, y_2 or y''.

Similarly, third and higher order derivatives are defined.

2. If x = f(t) and y = g(t), then

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left\{ \frac{g'(g)}{f'(g)} \right\}$$

or,
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left\{ \frac{g'(g)}{f'(g)} \right\} \frac{d}{dx}$$

or,
$$\frac{d^2y}{dx^2} = \frac{f'(t)g''(t) - g'(t)f''(t)}{\{f'(g)\}^3}$$

EXERCISE-1

- 1. If $y = A \cos nx + B \sin nx$, show that $\frac{d^2y}{dx^2} + n^2y = 0$.
- 2. If $y = Ae^{mx} + Be^{nx}$, show that $\frac{d^2y}{dx^2} (m+n)\frac{dy}{dx} + mny = 0$
- 3. If $y = A \cos(\log x) + b \sin(\log x)$, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.
- 4. If y = tan x + sec x, prove that $\frac{d^2y}{dx^2} = \frac{\cos x}{(1-\sin x)^2}$
- 5. If $y = x \log \left(\frac{x}{a + bx} \right)$, prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} y \right)^2$
- 6. If $y = \sin^{-1} x$, then show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0$
- 7. If $e^y(x + 1) = 1$, show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$
- 8. If $y = \left\{x + \sqrt{x^2 + 1}\right\}^m$, show that $(x^2 + 1) y_2 + xy_1 m^2y = 0$.

9. If
$$y = \frac{\sin^{-1}}{\sqrt{1-x^2}}$$
, show that $(1-x^2)\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} - y = 0$.

10. If
$$x = \tan\left(\frac{1}{a}\log y\right)$$
, show that $(1 + x^2)\frac{d^2y}{dx^2} + (2x - a)\frac{dy}{dx} = 0$.

11.
$$y = x^x$$
, prove that $\frac{d^2y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0$.

12. If
$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$, find $\frac{d^2 y}{dx^2}$.

13. If
$$x = a \cos \theta + b \sin \theta$$
 and $y = a \sin \theta - b \cos \theta$, prove that $y^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$.

14. If
$$(x - a)^2 + (y - b)^2 = c^2$$
, prove that
$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$
 is a constant independent of a and b.

- 15. If $f(x) = |x|^3$, show that f''(x) exists for all real x and find it.
- 16. Find the second ordere derivatives of each of the following functions:

(i)
$$x^3 + \tan x$$

(ii)
$$sin(log x)$$

(iv)
$$e^x \sin 5x$$

(v)
$$e^{6x}$$
 os $3x$

(vi)
$$x^3 \log x$$

$$(ix)\log(\log x)$$

17. If
$$y = x + \tan x$$
, show that $\cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$

18. If
$$x = a(\cos \theta + \theta \sin \theta)$$
, $y = a(\sin \theta - \theta \cos \theta)$; prove that $\frac{d^2y}{dx^2} = \frac{\sec^3 \theta}{a \theta}$.

19. If
$$x = a(1 - \cos \theta)$$
, $y = a(\theta + \sin \theta)$, prove that $\frac{d^2y}{dx^2} = \frac{-1}{a}$ at $\theta = \frac{\pi}{2}$.

20. If
$$x = \sin t$$
, $y = \sin pt$, prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2y = 0$.

21. If
$$y = 3 \cos(\log x) + 4 \sin(\log x)$$
, prove that $x^2y_2 + xy_1 + y = 0$.

22. If
$$y = A e^{-kt} \cos(pt + c)$$
, prove that $\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + n^2y = 0$, where $n^2 = p^2 + k^2$.

By: Dir. Firoz Ahmad

- 23. If $x = \sin\left(\frac{1}{a}\log y\right)$, show that $(1 x^2) y_2 xy_1 a^2y = 0$.
- 24. If $y = (\tan^{-1} x)^2$, then prove that $(1 + x)^2 y_2 + 2x(1 + x^2)y_1 = 2$.
- 25. Find $\frac{d^2y}{dx^2}$, where $y = log\left(\frac{x^2}{e^2}\right)$.
- 26. If $y = \cos^{-1} x$, find $\frac{d^2y}{dx^2}$ in terms of y alone.
- 27. If $y = 500 e^{7x} + 600 e^{-7x}$, show that $\frac{d^2y}{dx^2} = 49y$
- 28. If $x = 2 \cos t \cos 2t$, $y = 2 \sin t \sin 2t$, find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{2}$
- 29. If $y = \sin(\log x)$, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$
- 30. If $y = 3 e^{2x} + 2 e^{3x}$, prove that $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 0$

9546359990

Ram Rajya More, Siwan XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

INCREASING & DECREASING FUNCTIONS & Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	***************************************
	Solutions of Exercise
Page	,

By: Dir. Firoz Ahmad

THINGS TO REMEMBER

A function f(x) is said to be a strictly increasing function on (a, b) if

$$x_1 \le x_2 \Rightarrow f(x_1) \le f(x_2)$$
 for all $x_1, x_1 \in (a, b)$

If $x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_1 \in (a, b)$

then f(x) is said to be strictly decreasing on (a, b).

- A function f(x) is said to be monotonic on (a, b) if it is either strictly increasing or strictly decreasing on (a, 2. b).
- A function f(x) is said to be increasing (decreasing) at a point x_0 it there is an interval $(x_0 h, x_0 + h)$ 3. containing x_0 such that f(x) is increasing (decreasing on $(x_0 - h, x_0 + h)$.
- A function f(x) is said to be increasing on [a, b] if it is increasing (decreasing) on (a, b) and it is increasing 4. (decreasing) at x = a and x = b.
- The necessaryand sufficient condition for a differentiable function defined on (a, b) and it is increasing 5. (decreasing on (a, b) is that f'(x) > 0 for all $x \in (a, b)$.
- The necessary and sufficient condition for a differentiable function defined on (a, b) to be strictly decreas-6. ing on (a, b) is that f'(x) < 0 for all $x \in (a, b)$.
- Let f(x) be a function defined on (a, b). 7.
 - (a) If f'(x) > 0 for all $x \in (a, b)$ except for a finite number of points, where f'(x) = 0, then f(x) is increasing
 - (b) If f'(x) < 0 for all $x \in (a, b)$ except for a finite number of points, where f'(x) = 0, then f(x) is decreasing on (a, b).
- (i) If f(x) is strictly increasing function on a interval [a, b], then f⁻¹ exists and it is also a strictly increasing 8. function.
 - (ii) If f(x) is strictly increasing function on an interval [a, b] such that it is continuous, then f^{-1} is continuous on [f(a), f(b)].
 - (iii) If f(x) is continuous on [a, b] such that $f'(c) \ge 0$ (f'(c) > 0) for each $c \in (a, b)$, then f(x) is monotinically (strictly) increasing function on [a, b].
 - (iv) If f(x) is continuous on [a, b] such that $f'(c) \le 0$ (f'(c) < 0) for each $c \in (a, b)$, then f(x) is monotinically (strictly) increasing function on [a, b].
 - (v) If f(x) and g(x) are monotonically (or strictly) increasing (or decreasing) functions on [a, b], then gof(k) is a monotonically (strictly) increasing function on [a, b].
 - (vi) If one of the two functions f(x) and g(x) is strictly (or monotonically) increasing and other a strictly (monotonically) decreasing, then gof(x) is strictly (monotonically) decreasing on [a, b].

EXERCISE-1

- Show that the function f(x) = -3x + 12 is strictly decreasing function on R. цĻ.
- Show that the function $f(x) = x^2$ is a strictly decreasing function on $(\infty -, 0]$ 2.
- Show that the function $f(x) = x^2$ is neither strictly increasing nor strictly decreasing on R. 3.
- Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$. 4.
- Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R. 5.

- Show that $f(x) = \frac{1}{1 + x^2}$ is neither increasing nor decreasing on R.
- (Sufficient Condition) Let be a differentiable real function defined on an open interval (a, b). 7.
 - if f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b).
 - if f'(x) > 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b).
- Find the intervals in which $f(x) = (x+1)^3 (x-3)^3$ is increasing or decreasing. 8.
- Find the intervals in which the function $f(x) = \log(1+x) \frac{2x}{2+x}$ is increasing or decreasing. 9.
- Find the intervals in which $f(x) = \frac{4x^2 + 1}{x}$ is increasing or decreasing.
- Find the intervals in which the function given by 11.

$$f(x) = x^2 + \frac{1}{x^3}, x \neq 0 \text{ is}$$

increasing

- (ii) decreasing
- For which values of x, the function $f(x) = \frac{x}{x^2 + 1}$ is increasing and for which values of x, it is decreasing.
- Separate $\left| 0, \frac{\pi}{2} \right|$ into subintervals in which $f(x) = \sin 3x$ is increasing or decreasing.
- Find the intervals in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is increasing or 14. decreasing.
- Find the intervals in which the function of given by 15.

$$f(x) = \frac{4\sin x - 2x - x\cos x}{2 + \cos x}, 0 \le x \le 2\pi$$

- is (i) increasing (ii) decreasing.
- Determine the values of x for which $f(x) = x^x$, x > 0 is increasing or decreasing. 16.
- Find the intervals in which $f(x) = \frac{x}{\log x}$ is increasing or decreasing. 17.
- Find the intervals in which $f(x) = 2 \log(x 2) x^2 + 4x + 1$ is increasing or decreasing. 18.
- Separate the interval $\left[0, \frac{\pi}{2}\right]$ into sub-intervals in which $f(x) = \sin^4 x + \cos^4 x$ is increasing or decreasing. 19.
- Prove that the function $f(x) = x^3 3x^2 + 3x 100$ is increasing on R. 20.
- Let I be an interval disjoined from (-1, 1). Prove that the function $f(x) = x + \frac{1}{x}$ 21.

By: Dir. Firoz Ahmad

- Prove that $f(\theta) = \frac{4\sin\theta}{2\cos\theta} \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$. 22.
- Prove that the function $f(x) = x^2 x + 1$ is neither increasing nor decreasing on (-1, 1). 23.
- Find the least value of a such that the function $x^2 + ax + 1$ is increasing on [1, 2]. 24.
- On which of the following intervals is the function $f(x) = x^{100} + \sin x 1$ increasing? 25.
 - (i) $\left(0, \frac{\pi}{2}\right)$
- (ii) $\left(\frac{\pi}{2},\pi\right)$
- (iv) -1, 1)

- Which of the following functions are decreasing on $\left(0, \frac{\pi}{2}\right)$? 26.
 - (i) cos x

- (ii) cos 2x
- (iv) cos 3x
- Find the intervals in which the following functions are increasing or decreasing. 27.
 - $f(x) = 10 6x 2x^2$
 - $f(x) = x^2 + 2x 5$ (ii)
 - (iii) $f(x) = 6 9x x^2$
 - (iv) $f(x) = ex^3 12x^2 + 18x + 15$
 - (v) $f(x) = 5 + 36x + 3x^2 2x^3$
 - (vi) $f(x) = x^3 6x^2 36x + 2$
 - (vii) $f(x) = -2x^3 9x^2 12x + 1$
 - (viii) $f(x) x^3 12^2 + 36x + 17$
- Show that $f(x) = \log \sin x$ is increasing on $\left(0, \frac{\pi}{2}\right)$ and decreasing on $\left(\frac{\pi}{2}, \pi\right)$. 28.
- Prove that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in \mathbb{R}$. 29.
- Find the intervals in which $f(x) = \log(1 + x) \frac{x}{1 + x}$ is increasing or decreasing. 30.-
- Prove that the function $f(x) = \cos x$ is: 31.
 - strictly decreasing $(0, \pi)$ (i)
 - strictly increasing in $(\pi, 2\pi)$ (ii)
 - neither increasing nor decreasing in $(0, 2\pi)$ (iii)